Vidéo de théorie et exercices-Addition et soustraction de fractions algébriques
1- Écouter la vidéo ci-dessous.
Si tu le préfères, tu peux écouter la vidéo par parties.
Ces parties sont disponibles dans les onglets "Vidéo", après la série d'exercices.
2- Répondre aux exercices sur du papier.
Les questions des exercices se retrouvent dans les onglets «Q» ci-dessous.
3- Corriger les exercices.
Les réponses (corrigés) pour chacune des questions se retrouvent dans les onglets «R» ci-dessous.
|
Effectue les opérations suivantes et indique les restrictions à imposer aux variables. Écris le résultat sous la forme la plus simple. a) \(\frac {2x}{(x^2 - 3x)} + \frac {1}{(3x + 2)}\) b) \(\frac {1}{(3x + 1)} + \frac {1}{(3x - 1)} + \frac {9x}{(9x^2 - 1)}\) c) \(\frac {2x}{(2x + 3)} + \frac {3}{(2x - 3)} - \frac {8}{(4x^2 - 9)}\) d) \(\frac {x}{(x + 5)} - \frac {1}{(x + 2)} + \frac {3x}{x^2 + 7x + 10}\) e) \(\frac {x^2 - y^2}{xy} - \frac {xy - y^2}{xy - x^2}\) f) \(\frac {2}{4x^2 + 8x + 3} - \frac {x}{2x^2 + x - 3} + \frac {1}{2x^2 - x -1}\) |
a)
\(\frac {2x}{(x^2 - 3x)} + \frac {1}{(3x + 2)} = \)
\(\frac {2x}{x(x - 3)} + \frac {1}{(3x + 2)} = \)
\(\frac {2}{(x - 3)} + \frac {1}{(3x + 2)} = \)
\(\frac {2(3x + 2) + (x - 3)}{(x - 3)(3x + 2)} = \)
\(\frac {6x + 4 + x - 3}{(x - 3)(3x + 2)} = \)
\(\frac {7x + 1}{(x - 3)(3x + 2)}\)
si \(x \neq 0\), \(x \neq 3\) et \(x \neq \frac {-2}{3}\)
b)
\(\frac {1}{(3x + 1)} + \frac {1}{(3x - 1)} + \frac {9x}{(9x^2 - 1)} = \)
\(\frac {1}{(3x + 1)} + \frac {1}{(3x - 1)} + \frac {9x}{(3x + 1)(3x - 1)} = \)
\(\frac {1(3x - 1)}{(3x + 1)(3x - 1)} + \frac {1(3x + 1)}{(3x + 1)(3x - 1)} + \frac {9x}{(3x + 1)(3x - 1)} = \)
\(\frac {(3x - 1) + (3x + 1) + 9x}{(3x + 1)(3x - 1)} = \)
\(\frac {15x}{(3x + 1)(3x - 1)}\), si \(x \neq \pm \frac {1}{3}\)
c)
\(\frac {2x}{(2x + 3)} + \frac {3}{(2x - 3)} - \frac {8}{(4x^2 - 9)} = \)
\(\frac {2x}{(2x + 3)} + \frac {3}{(2x - 3)} - \frac {8}{(2x + 3)(2x - 3)} = \)
\(\frac {2x(2x - 3)}{(2x + 3)(2x - 3)} + \frac {3(2x + 3)}{(2x + 3)(2x - 3)} - \frac {8}{(2x + 3)(2x - 3)} = \)
\(\frac {2x(2x - 3) + 3(2x + 3) - 8}{(2x + 3)(2x - 3)} = \)
\(\frac {4x^2 - 6x + 6x + 9 - 8}{(2x + 3)(2x - 3)} = \)
\(\frac {4x^2 + 1}{(2x + 3)(2x - 3)}\), si \(x \neq \pm \frac {3}{2}\)
d)
\(\frac {x}{(x + 5)} - \frac {1}{(x + 2)} + \frac {3x}{x^2 + 7x + 10} = \)
\(\frac {x}{(x + 5)} - \frac {1}{(x + 2)} + \frac {3x}{(x + 2)(x + 5)} = \)
\(\frac {x(x + 2)}{(x + 5)(x + 2)} - \frac {1(x + 5)}{(x + 2)(x + 5)} + \frac {3x}{(x + 2)(x + 5)} = \)
\(\frac {x(x + 2) - (x + 5) + 3x}{(x + 5)(x + 2)} = \)
\(\frac {x^2 + 2x - x - 5 + 3x}{(x + 5)(x + 2)} = \)
\(\frac {x^2 + 4x - 5}{(x + 5)(x + 2)} = \)
\(\frac {(x + 5)(x - 1)}{(x + 5)(x + 2)} = \)
\(\frac {(x - 1)}{(x + 2)}\), si \(x \neq -2\) et \(x \neq -5\)
e)
\(\frac {x^2 - y^2}{xy} - \frac {xy - y^2}{xy - x^2} = \)
\(\frac {(x + y)(x - y)}{xy} - \frac {y(x - y)}{x(y - x)} = \)
\(\frac {(x + y)(x - y)(y - x)}{xy(y - x)} - \frac {y^2(x - y)}{xy(y - x)} = \)
\(\frac {(x + y)(x - y)(y - x) - y^2(x - y)}{xy(y - x)} = \)
\(\frac {(x^2y - y^3 - x^3 + xy^2) - y^2x + y^3}{xy(y - x)} = \)
\(\frac {x^2y - x^3}{xy(y - x)} = \)
\(\frac {x^2(y - x)}{xy(y - x)} = \)
\(\frac {x}{y}\), si \(x \neq 0\), \(y \neq 0\) et \(y \neq x\)
f)
\(\frac {2}{4x^2 + 8x + 3} - \frac {x}{2x^2 + x - 3} + \frac {1}{2x^2 - x -1 }= \)
\(\frac {2}{(2x + 1)(2x + 3)} - \frac {x}{(2x + 3)(x - 1)} + \frac {1}{(2x + 1)(x - 1)} = \)
\(\frac {2(x - 1)}{(2x + 1)(2x + 3)(x - 1)} - \frac {x(2x + 1)}{(2x + 1)(2x + 3)(x - 1)} + \frac {1(2x + 3)}{(2x + 1)(2x + 3)(x - 1)} = \)
\(\frac {2x - 2 - 2x^2 - x + 2x + 3}{(2x + 1)(2x + 3)(x - 1)} = \)
\(\frac {-2x^2 + 3x + 1}{(2x + 1)(2x + 3)(x - 1)} = \), si \(x \neq \frac {-3}{2}\), \(x \neq \frac {-1}{2}\) et \(x \neq 1\)
Effectue les opérations suivantes et indique les restrictions à imposer aux variables. Écris le résultat sous la forme la plus simple.
Conseil: factorise les numérateurs et les dénominateurs avant de procéder au dénominateur commun. Il peut y avoir des simplifications très utiles à faire.
a)
\(\frac {3x^2 + 13x + 14}{x+2} - \frac {5}{x+3}\)
b)
\(\frac {6ab-15a+12b-30}{(6b^2 - 15b)} + \frac {4a}{(b-1)}\)
a)
\(\frac {3x^2 + 13x + 14}{x+2} - \frac {5}{x+3}=\)
\(\frac {3x^2 + 6x +7x + 14}{x+2} - \frac {5}{x+3}=\)
\(\frac {3x(x+2)+7(x+2)}{x+2} - \frac {5}{x+3}=\)
\(\frac {(3x+7)(x+2)}{x+2} - \frac {5}{x+3}=\)
\(\frac {(3x+7)}{1} - \frac {5}{x+3}=\)
\(\frac {(3x+7)(x+3)-5}{x+3}=\)
\(\frac {3x^2+9x+7x+21-5}{x+3}=\)
\(\frac {3x^2+16x+16}{x+3}\)
si \(x \neq -3\) et \(x \neq -2\)
b)
\(\frac {6ab-15a+12b-30}{(6b^2 - 15b)} + \frac {4a}{(b-1)}=\)
\(\frac {3a(2b-5)+6(2b-5)}{3b(2b-5)} + \frac {4a}{(b-1)}=\)
\(\frac {(2b-5)(3a+6)}{3b(2b-5)} + \frac {4a}{(b-1)}=\)
\(\frac {3(2b-5)(a+2)}{3b(2b-5)} + \frac {4a}{(b-1)}=\)
\(\frac {(a+2)}{b} + \frac {4a}{(b-1)}=\)
\(\frac {(b-1)(a+2)+4ab}{b(b-1)}=\)
\(\frac {ab+2b-a-2+4ab}{b(b-1)}=\)
\(\frac {5ab+2b-a-2}{b(b-1)}\)
si \(b \neq 0\), \(b \neq 1\) et \(b \neq \frac {5}{2}\)
Addition de fractions algébriques sans facteur commun au dénominateur.
Addition de fractions algébriques avec facteur commun au dénominateur.